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The Equation of State of Song and
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An analytical equation of state is applied to calculate the compressed and
saturation thermodynamic properties of fluorine. The equation of state is that of
Song and Mason. It is based on a statistical-mechanical perturbation theory of
hard convex bodies and is a fifth-order polynomial in the density. There exist
three temperature-dependent parameters: the second virial coefficient, an effec-
tive molecular volume, and a scaling factor for the average contact pair distribu-
tion function of hard convex bodies. The temperature-dependent parameters can
be calculated if the intermolecular pair potential is known. However, the equa-
tion is usable with much less input than the full intermolecular potential, since
the scaling factor and effective volume are nearly universal functions when
expressed in suitable reduced units. The equation of state has been applied to
calculate thermodynamic parameters including the critical constants, the vapor
pressure curve, the compressibility factor, the fugacity coefficient, the enthalpy,
the entropy, the heat capacity at constant pressure, the ratio of heat capacities,
the Joule-Thomson coefficient, the Joule-Thomson inversion curve, and the
speed of sound for fluorine. The agreement with experiment is good.

1. INTRODUCTION

Fluorine, the most chemically reactive element of the periodic table, was
isolated more than a century ago by Moissan [1], who received a Noble
Prize for this achievement. It has widespread applications in modern
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industry and technology. One of the main current uses for elemental
fluorine is in the nuclear power industry for the production of uranium
hexafluoride which is needed for the separation, by gaseous diffusion, of
235U. An expanding use is in the manufacture of sulfur hexafluoride, which
is widely used in power generation and distribution industries as an
insulator in gas-filled circuit breakers and as the main insulation for power
transmission in high-voltage coaxial cables. A new use is in the develop-
ment of a high-powered laser which burns hydrogen and fluorine gases to
form hot hydrogen fluoride molecules which emit infrared light at a wave-
length of 2.7 mm.

A central problem in the theory of fluids is the relation of their ther-
modynamic parameters in terms of intermolecular forces. One of the
fundamental approaches to this problem is through the formulation of
an accurate equation of state, since the thermodynamic functions can be
easily derived once the equation of state is known. The most successful
theories at present are perturbation theories based on reference systems
consisting of hard bodies [2] analogous to the perturbation theories of
simple fluids based on hard spheres. Two different methods are primarily
used in these theories, depending on the type of pair potentials used to
characterize molecular interactions, the multicenter potential [3] and the
Kihara core potential [4]. The respective perturbation theories employ
fused hard spheres or hard convex bodies as reference systems. Unfor-
tunately, both types of theories require considerable numerical computa-
tions and no simple analytical equation of state for molecular fluids is
available.

Recent work by Song and Mason on a statistical-mechanical theory
for the equation of state of fluids has yielded simple but remarkably
accurate results for both spherical [5] and molecular [6] fluids. Three
temperature-dependent parameters arise in their formulation: the second
virial coefficient, an effective hard-sphere diameter, and a scaling factor for
the pair distribution function at contact. All three parameters can be
calculated from the intermolecular potential. If the intermolecular poten-
tial is not known, the last two parameters can be determined from the
experimental second virial coefficient because they are insensitive to the
shape of the potential. Thus, the second virial coefficient serves to predict
the entire equation of state in terms of two scaling parameters and, hence,
a number of other thermodynamic properties including the enthalpy, the
internal energy, and the vapor pressure curve among others. The purpose
of this paper is to apply this equation of state to calculate compressed and
saturation thermodynamic properties of fluorine. It should be noted that
the accuracy is not necessarily enhanced by greater complexity of the equa-
tion of state.
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2. THEORY

Song and Mason [6] obtained an analytical equation of state for
convex-molecule fluids based on statistical-mechanical perturbation theory.
The equation of state is of the form,

where p is the pressure, p is the molar (number) density, B2(T) is the
second virial coefficient, a.(T) is the contribution of the repulsive forces to
the second virial coefficient, G ( n ) is the average pair distribution function
at contact for equivalent hard convex bodies, and kT has its usual meaning.
They adopted the following form for G(n), which was found to be accurate
for hard convex bodies [6, 7],

where y1 and y2 are chosen to reproduce the correct third and fourth virial
coefficients of the bodies and n is the packing fraction. In practice y1 and
y2 can be approximated in terms of a single nonsphericity parameter Y,
equal to unity for hard spheres. The parameters y1 and y2 have been
defined in terms of y as [6]

The packing fraction, n, is given by

where b is the van der Waals covolume and can be defined in terms of a
as
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Once the intermolecular potential is known, the parameters B2(T], a.(T),
and b(T) can be found by integration:

where u0(r) is the repulsive part of u(r).
In practice, the potential u(r) is seldom accurately known, although

B2(T) itself can be found experimentally. In such cases Eq. (1) can be
treated as an equation of state with two unknown temperature-dependent
parameters, a and b. However, it turns out that a and b are rather insen-
sitive to the shape of u(r), so that they appear as almost universal functions
of temperature in terms of suitable reduced units.

Suitable reduced units can be chosen by imagining that B 2 ( T ) is
known and that the parameters e and rm for some model potential u(r) are
found by fitting B2, preferably in the region of the Boyle temperature. The
values of e and rm will depend on the particular model chosen, but they will
always be such as to reproduce the values of the Boyle temperature TB, the
Boyle volume vB, and the Boyle pressure pB, defined as

The reduced quantities a/vB and b/vB turn out to be almost universal func-
tions of the reduced temperature, T/TB, and depend only weakly on the
detailed shape of u(r). They can therefore be calculated on the basis of
some simple mean spherical potential such as the Lennard-Jones (12-6)
potential, and numerical tables giving a /V B and b/vB as functions of T/TS

for the (12-6) potential are available [5].
If data for B2(T) do not extend to high enough temperatures to deter-

mine TB and UB directly, an extrapolation procedure with a mean-spherical
potential can be used. Such a potential can be defined via B 2 ( T ) as Eq. (7).
This integral is evaluated for some choice of u(r), and then the average
potential parameters e and rm for u(r) are found by fitting the experimental
B2(T), preferably as close as possible to the Boyle temperature. Then TB

and VB follow directly from e and rm for the particular potential chosen.
The remaining parameter y is best found by fitting available p — v—T

data, preferably at high densities. Since y is thus determined empirically, it
tends to compensate for any inaccuracies in the values adopted for Tn and



UB or, equivalently, for any inadequacies in the form chosen for u(r) and
resultant inaccuracies in the values of £ and rm.

3. COMPARISON WITH EXPERIMENT

3.1. Thermodynamic Properties in the Compressed State

Because of the above-mentioned applications of fluorine we decided to
calculate its thermodynamic properties. We used accurate values of B2(T)
[8] for calculating the Lennard-Jones (12-6) parameters. Since the
experimental values of B2(T) for fluorine [8] do not extend to the Boyle
temperature, we used the above-mentioned procedure to determine average
potential parameters via Eqs. (7) and (9) and then the Boyle parameters
were calculated. We obtained e/k= 108.747 K, rm = 3.742 A, TB = 371.7 K,
and UB = 37.91 ml - m o l - 1 . In determining the Boyle parameters, the
tabulated values of a/vB and b/vR as a function of T/TB for the (12-6)
potential [ 5 ] were used. The parameter y is then found by fitting the high-
density experimental p-v-T data [9] for fluorine. The p-v isotherms are
shown in Fig. 1 at three temperatures, one below and two above the critical
temperature, for the best calculated value of y, that is, y = 1.118.

3.7.7. Compressibility Factor

The compressibility factor, defined as Z — p/pkT, shows the extent
of deviation from ideality. Once the equation of state is known, the

Fig. 1. Reduced p-v isotherms. The curves represent the equa-
tion of state, and the points indicate the experimental data [9],
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compressibility factor can be calculated at any temperature and pressure,
Compressibility isotherms have been calculated from the equation of state
over the pressure range of 1 to 500 bar and are compared with the
calculated (smoothed) values of de Reuck [10] in Fig. 2. The agreement is
within +2%.

3.1.2. Fugacity Coefficient

The fugacity is related to the equation of state by the formula

Fig. 2. The plot of compressibility factor, Z, as
a function of pressure at 110 K ( O ) , 150 K ( * ),
200 K ( D), and 300 K ( •). The curves repre-
sent the equation of state, and the points are
taken from Ref. 10. The points above 200 bar are
taken from Ref. 9.
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where f is the fugacity and Z is the compressibility factor. The ratio f/p is
called the fugacity coefficient. The fugacity coefficient can be calculated
from Eq. (10) in conjunction with the equation of state. Since the analytical
calculation of the above integral is not straightforward, we proceeded
numerically. The calculated isotherms of the fugacity coefficient over the
pressure range of 1 to 500 bar and their good agreement (within ± 1.7%)
with the calculated values in Ref. 10 are shown in Fig. 3.
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Fig. 3. Same as Fig. 1 for the fugacity coef-
ficient, f/p.

3.1.3. Enthalpy

The excess internal energy can be found from

This yields

The excess internal energy is the internal energy relative to the ideal gas at
the same temperature and pressure. The internal energy can be found by
adding the excess internal energy and the internal energy of the ideal gas,
which can be calculated via the following equation [11].

where h is Planck's constant, v is the vibrational frequency, and De is the
dissociation energy.
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Fig. 4. The enthalpy, H-H2 9 8 , as a function of temperature at 1
bar ( • ), 30 bar ( D), 60 bar ( A ) , 100 bar ( » ), and 200 bar (O ).
The curves represent the equation of state, and the points are
taken from Ref. 10. The points above 100 K are taken from Ref. 9.

The enthalpy can be found by the equation, H = U + pv. Since
enthalpy does not have an absolute value, it is necessary to choose a zero
reference state ( p 0 , T0) from which the difference in enthalpy can be
calculated. The zero reference state is taken to be (1 bar, 298 K), and the
enthalpy of fluorine at this state is 8.825 k J - m o l - 1 [ 1 0 ] . We have
calculated the molar enthalpies of the liquid and vapor phases relative to
the molar enthalpy of the ideal gas at 298 K. The vibrational frequency
and dissociation energy of fluorine are 918 c m - 1 and 160 kJ • mo l - 1 ,
respectively [12]. Shown in Fig. 4 are the isobars of enthalpy and their
comparison with the calculated values in Ref. 10. The average absolute
deviation for the higher-pressure isobar over the temperature range of 100
to 500 K is 3%.

3.1.4. Entropy

The excess entropy is the entropy relative to the entropy of the ideal
gas at the same temperature and pressure and is defined as

where Sex is the excess entropy. For the present equation of state, this
yields
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The entropy S can be calculated by adding the excess entropy to the
entropy of the ideal gas [11] at the same temperature and pressure via the
following equation.

where m is the molecular weight, I is the moment of inertia, a is the
symmetry number, and wel is the ground electronic state degeneracy.

The isobars of S-S298 have been calculated with Eqs. ( 1 ) , (15) , and (16),
and they are compared with the calculations of de Reuck [10] in Fig. 5.

Fig. 5. Same as Fig. 4 for the entropy at 1 bar
( • ), 50 bar ( D), 200 bar ( » ), and 500 bar ( O).
The points at temperatures above 300 K and
pressures above 200 bar are taken from Ref. 9.
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The entropy of fluorine at 1 bar and 298 K is 202.791 J - m o l - 1 - K - 1 [10],
and the equilibrium internuclear distance for calculating the moment of
inertia is 1.41 A [12]. The ground electronic state of fluorine is nondegen-
erate, and the symmetry number is 2. The maximum deviations extend to
+ 15.2% over the temperature range of 100 to 500 K.

3.1.5 Heat Capacities

The heat capacity at constant volume is defined as

For the present equation of state Cv is

The heat capacity at constant pressure can be obtained through the
thermodynamic relation,

where aT is the thermal expansion and B is the isothermal compressibility.
The parameters aT and B are defined as
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The following formulas have been obtained from the equation of state
for the parameters aT and B.

and

The heat capacities can be calculated from Eqs. (1), (18), (19), (21),
and (22). The calculated isobars of heat capacity at constant pressure and
the ratio of heat capacities over the temperature range of 100 to 500 K are
shown in Figs. 6 and 7, respectively, and are compared with the calculated
values in Ref. 10. The maximum deviations which are due to the liquid-
vapor phase transition extend to +31 %.

Fig. 6. The isobaric heat capacity, Cp, as a function
of temperature at 1 bar ( *), 50 bar (•), and 100 bar
(D) . The curves represent the equation of state, and
the points are taken from Ref. 10.
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Fig. 7. Same as Fig. 6 tor the ratio of heat capacities,
CP/CV

3.1.6. Joule-Thomson Coefficient and Joule-Thomson Inversion Curve

The Joule-Thomson coefficient has been proposed as a very sensitive
test of the equation of state [13]. The Joule-Thomson coefficient, MJT, is
related to the equation of state by the thermodynamic formula,

Isobars of the Joule-Thomson coefficient have been calculated with
Eqs. (1) , (18), (19), (21) , (22), and (23) and they are compared with the
calculated values of Ref. 10 in Fig. 8. The average absolute error for the
lower-pressure isobar is 6.6%.

The inversion curve is determined by the condition, MJT = 0. For the
present equation of state this yields

The calculated Joule-Thomson inversion curve is shown in Fig. 9 and is
compared with a few available tabulated data [10].
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Fig. 8. Same as Fig. 6 for the Joule-Thomson
coefficient, MJT, at 1 bar (• ), 50 bar ( D), 100 bar
( * ), and 200 bar ( O ).

3.1.7. Speed of Sound

The speed of sound can be calculated from the equation

Fig. 9. The Joule-thomson inversion curve for
fluorine. The curve represents the present equation
of state, and the dots are taken from Ref. 10.
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Fig. 10. Same as Fig. 6 tor the speed of sound.

where W is the speed of sound and M is the molar mass. Equations (25)
and (1) together with the experimental values of CP/CV have been used to
calculate the speed of sound in fluorine. The calculated isobars of the speed
of sound are shown in Fig. 10 and compared with the calculated data in
Ref. 10. For the higher-pressure isobars, the maximum deviations extend
to ±26%.

3.2. Thermodynamic Properties in the Saturation State

3.2.1. Critical Constants

The critical constants can be found by the conditions (dp/dv)T = 0 and
(d2p/dv2)T = 0. These result in the following equations:

and
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Equations (26) and (27) solved simultaneously with Eq. (1) give the critical
constants. We have found T C = 1 5 0 K , pK= 12.53 mol • L-1, and Pc =
50 bar. The actual values of Tc , p c , and pf are 144.414 K, 15.60 mol • L-1,
and 52.395 bar, respectively [10]. Since the present equation of state is
based on a mean-field approximation, the obtained critical constants
cannnot be very accurate.

3.2.2. Vapor-Pressure Curve

The Maxwell construction on the p-v isotherms leads to the following
equation:

Solved simultaneously with the equation of state, this yields the saturated
vapor pressure, Psat, and the orthobaric liquid and vapor densities, P1 and pe.
The calculated vapor-pressure curve for fluorine is compared with the
calculations of de Reuck [10] in Fig. 11, as In p vs 1/T (in dimensionless

Fig. 11. Clausius-Clapeyron plot of In p versus 1 /Tin
dimensionless units. The curve is from Ref. 10. and the
points represent our equation of state.
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Fig. 12. The reduced orthobaric liquid and
vapor volumes from 100 K to the critical point.
The curve represents the equation of state, and
the points are taken from Ref. 10.

units) over the temperature range of 100 K to the critical point. The
average absolute deviation is 5.9%. The calculated orthobaric volumes
from Eqs. (1) and (28) are compared with the calculated values of Ref. 10
in Fig. 12. Also shown in Fig. 13 are the calculated values of com-
pressibility factor for the coexisting liquid and vapor phases and their

Fig. 13. The compressibility factors of the
coexisting liquid and vapor phases as a function
of temperature. The curve represents the equa-
tion of state, and the points are taken from
Ref. 10.
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Fig. 14. The internal energy of the coexisting
liquid and vapor phases as a function of tempera-
ture. The points are the present equation of state,
and the curve is taken from Ref. 10.

comparison with the calculated values in Ref. 10. The average absolute
deviation is 2.95%.

3.2.3. Internal Energy and Enthalpy

The formula and the method of calculation of internal energy and
enthalpy are given in Section 3.1.3. We have calculated the values of inter-
nal energy and enthalpy from Eqs. ( 1 2 ) and (13 ) relative to the molar
enthalpy of the ideal gas at 298 K. The calculated molar internal energies
and enthalpies from 100 K to the critical point are compared with the
calculated values of de Reuck [10] in Figs. 14 and 15, respectively. The

Fig. 15. Same as Fig. 14 for the enthalpy.



average absolute deviations are 2.80 and 2.93%, respectively. The Maxwell
equal area construction has not been applied.

4. CONCLUSIONS

Our procedure provides a statistical-mechanical equation of state for
fluorine in the compressed and liquid-vapor coexistence regions. Some of
the previously proposed equations of state in the literature for fluorine
consist of many terms that complicate the form of the equation and conse-
quently all the related thermodynamic parameters. Usually these equations
need much input data and are not based on a molecular level theory, and
their complicated form does not allow direct physical interpretation. The
present equation of state is accurate and simple in form, needs less input
data, and has a statistical-mechanical basis. The temperature-dependent
parameters of the equation of state can be calculated from three sets of
integrations if the intermolecular pair potential is known. If the pair poten-
tial is not known, experimental knowledge of the second virial coefficient
suffices to fix the Boyle parameters, from which a.(T) and b(T) can be
calculated with sufficient accuracy from some simple model of the mean
pair potential. Then y is found empirically from limited information on the
high-density fluid. Thus, a knowledge of the second virial coefficient plus
some high-density data is sufficient to put the equation in the operative
mode.

Our calculated results on the compressibility factor, fugacity coef-
ficient, enthalpy, entropy, and Joule-Thomson coefficient are in very good
agreement with the calculated values in Ref. 10. Higher deviations at low
temperatures can be attributed to the inherent inaccuracies in the experi-
mental low-temperature second virial coefficients. The latter three quantities
contain the first derivative of the temperature-dependent parameters of the
equation of state, and hence, the errors become exaggerated. The heat
capacity involves a second differentiation of the parameters, and conse-
quently, the errors become several orders of magnitude exaggerated.

Some of the deviations in the calculated results can be attributed to
the location of the point at which the liquid-vapor phase transition occurs.
Because the present equation of state is based on mean-field theory, it does
not work very well in the two-phase region and does not reproduce exactly
the phase-transition pressures or temperatures. Since the thermodynamic
parameters vary severely as the phase transition occurs, this can lead to
substantial error.

The calculated results are less accurate in the critical region. The
relative deviations in the critical temperature, pressure, and volume are 4,
— 6, and, —10%, respectively, compared to the experimental values in
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Ref. 9. This in not bad for such a point as the critical point, for example,
the experimentally measured critical density of Ref. 9 is 11 % less than that
of Ref. 10. The calculated orthobaric liquid and vapor densities, the
Clausius-Clapeyron plot of in p vs 1 /T, and the compressibility factors as
shown in Figs. 11-13 are good. The calculated values of internal energy
and enthalpies in the vicinity of the triple point are well reproduced for the
gas phase but are less accurate for the liquid phase. Perhaps this deficiency
could be attributed to the effective van der Waals covolume b (equivalent
to an effective hard-sphere diameter d).
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